Extensions of tr[A−1−B−1)(A−B)] ⩽ 0 for covariance matrices A, B
نویسندگان
چکیده
منابع مشابه
Information Covariance Matrices for Multivariate Burr III and Logistic Distributions
Main result of this paper is to derive the exact analytical expressions of information and covariance matrices for multivariate Burr III and logistic distributions. These distributions arise as tractable parametric models in price and income distributions, reliability, economics, Human population, some biological organisms to model agricultural population data and survival data. We showed that ...
متن کاملA Clt for Regularized Sample Covariance Matrices
We consider the spectral properties of a class of regularized estimators of (large) empirical covariance matrices corresponding to stationary (but not necessarily Gaussian) sequences, obtained by banding. We prove a law of large numbers (similar to that proved in the Gaussian case by Bickel and Levina), which implies that the spectrum of a banded empirical covariance matrix is an efficient esti...
متن کاملMaximum Covariance Difference Test for Equality of Two Covariance Matrices
We propose a test of equality of two covariance matrices based on the maximum standardized difference of scalar covariances of two sample covariance matrices. We derive the tail probability of the asymptotic null distribution of the test statistic by the tube method. However the usual formal tube formula has to be suitably modified, because in this case the index set, around which the tube is f...
متن کاملStudies of Three-Body B^+→D ̅^* 〖(2007)〗^0 K^+ K ̅^0 and B^0→D^* 〖(2010)〗^- K^+ K ̅^0 Decays
We analyze three-body decays of and . Under the factorization approach, there are tree level diagrams for these decay modes and the transition matrix element of decay is factorized into a form factor multiplied by decay constant and form factor multiplied into weak vertices form factor. The transition matrix element of decay is also factorized into a form factor multiplied into weak vertic...
متن کاملWeakly Informative Prior for Covariance Matrices 1 Running head: WEAKLY INFORMATIVE PRIOR FOR COVARIANCE MATRICES Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models
When fitting hierarchical regression models, maximum likelihood estimation has computational (and, for some users, philosophical) advantages compared with full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (Σ) of group-level varying coefficients are often degenerate. One can do better, even from a purely point-estimation perspective, by using a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1990
ISSN: 0024-3795
DOI: 10.1016/0024-3795(90)90359-k